Stability and Instance Optimality for Gaussian Measurements in Compressed Sensing

نویسنده

  • P. Wojtaszczyk
چکیده

In compressed sensing we seek to gain information about vector x ∈ R from d << N nonadaptive linear measurements. Candes, Donoho, Tao et. al. ( see e.g. [2, 4, 8]) proposed to seek good approximation to x via `1 minimisation. In this paper we show that in the case of Gaussian measurements it recovers the signal well from inacurate measurements, thus improving result from [4]. We also show that with big probability it gives information comparable with best k term approximation in euclidean norm, k ∼ d/ ln N . This provides the first numerically friendly algorithm to do so, see [7].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Signal Recovery from Phaseless Measurements

The aim of this paper is to study the stability of the l1 minimization for the compressive phase retrieval and to extend the instance-optimality in compressed sensing to the real phase retrieval setting. We first show that the m = O(k log(N/k)) measurements is enough to guarantee the l1 minimization to recover k-sparse signals stably provided the measurement matrix A satisfies the strong RIP pr...

متن کامل

A Geometrical Stability Condition for Compressed Sensing

During the last decade, the paradigm of compressed sensing has gained significant importance in the signal processing community. While the original idea was to utilize sparsity assumptions to design powerful recovery algorithms of vectors x ∈ R, the concept has been extended to cover many other types of problems. A noteable example is low-rank matrix recovery. Many methods used for recovery rel...

متن کامل

Robustness to unknown error in sparse regularization

Quadratically-constrained basis pursuit has become a popular device in sparse regularization; in particular, in the context of compressed sensing. However, the majority of theoretical error estimates for this regularizer assume an a priori bound on the noise level, which is usually lacking in practice. In this paper, we develop stability and robustness estimates which remove this assumption. Fi...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010